4.9t^2+20t-40=0

Simple and best practice solution for 4.9t^2+20t-40=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2+20t-40=0 equation:



4.9t^2+20t-40=0
a = 4.9; b = 20; c = -40;
Δ = b2-4ac
Δ = 202-4·4.9·(-40)
Δ = 1184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1184}=\sqrt{16*74}=\sqrt{16}*\sqrt{74}=4\sqrt{74}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{74}}{2*4.9}=\frac{-20-4\sqrt{74}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{74}}{2*4.9}=\frac{-20+4\sqrt{74}}{9.8} $

See similar equations:

| ⅘x-⅒=3/10 | | 11×+8y=3 | | 6v+-3=-81 | | 90x-x^2-800=0 | | 2m=2/4 | | 840=40*x+(15*(x*1.5)) | | 18x-11=43 | | 3(x–4)=4(x+2) | | 3(x+4)-5=17 | | 7/9x=7/81 | | 2.3x-14.71=5.3 | | 11-9=x/5 | | p^2–(2p+1)^2=0 | | 6t-5=-9t | | -38+23=-8x+13x | | -4/5x=-8/25 | | X^2+20x=61 | | 3x+226=6(x-6) | | X^2+20x-61=0 | | 6y+12×=24 | | 24x-29x=7-12 | | 3/4a-8=a-3 | | 5.6/j=0.71 | | 7-(9x+4)=-9x-4 | | -26+18=-4x+18x | | w/7-2.3=-19.8 | | -0.8=-0.6u+0.5u | | -4/9x=-28 | | X/x/2-10=1/1 | | 6x+11=x+14 | | 9(x+4)=5(x-9(9-x | | x6=9x4 |

Equations solver categories